Зависимость от кислорода. Рассказ пациента, выжившего в алтайском ковидном госпитале

Что происходит при ковиде?

Самое, пожалуй, очевидное — это поражение альвеол. Дело в том, что у их клеток, как и положено, есть оболочки — мембраны. А в эти мембраны в довольно большом количестве встроены особые белки, обозначенные в микробиологии как АПФ2 (в англоязычном варианте — ACE2). Не будем расшифровывать, потому что это не так важно. Тут самое интересное, что эти АПФ2 служат в качестве клеточных рецепторов — отвечают за взаимодействие клеток с окружающей средой. Так вот, эти самые рецепторы оказались максимально удобной мишенью для SARS-CoV-2. Как мы уже усвоили, «корона» ковидной частицы (шипы, которые из неё торчат) — это Spyke-белки. Именно этими «крючками» коронавирусный элемент легко цепляется за АПФ2, крепко жмёт его руку и уверяет, что он — вкусное и полезное угощение. И наивная клетка радостно это дело проглатывает.

Как следствие, по сигналу тревоги капилляры начинают выделять жидкое содержимое крови — экссудат. В этой жидкости есть иммуноглобулины для борьбы с интервентами, а ещё это замедляет кровоток, чтобы вирус не разносило по всему организму. Беда в том, что экссудат заполняет пузырьки и снижает, так сказать, полезную площадь, предназначенную для воздуха.

«В Центре Гамалеи не дремлют». Вирусолог рассказал, как действует вещество, полностью блокирующее коронавирус

В то же время, по мнению директора НИИ фтизиопульмонологии Петра Яблонского, кислород при ковиде перестаёт поступать в капилляры, потому что нарушается контакт между стенками кровеносных сосудов и альвеол, которые в нормальном состоянии практически единое целое.

Альвеоло-капиллярная мембрана — это самый тонкий механизм внутреннего дыхания, именно в этой мембране происходит этот интимный процесс обогащения кислородом крови, эритроциты именно там насыщаются. И когда эти две среды разобщены, то получается такой момент шунтирования — кровь пробегает через лёгкие, но уходит, не нагруженная кислородом

Но это далеко не все способы кислородной блокады в ковидном арсенале. Есть ещё кое-что. Этот вирус с таким же успехом оккупирует эритроциты. Об этом заявили в том числе учёные из Дальневосточного федерального университета. Более того, по их мнению, красные кровяные тельца — ключевая мишень ковида. К похожим, если не аналогичным, выводам пришли, к примеру, китайские исследователи. По их данным, коронавирус разрушает гемоглобин — отрывает от него гем и использует как «запчасть» для своего будущего репликанта, а ненужное железо просто выбрасывает.

А при таком раскладе, как мы теперь понимаем, кислород никуда не переносится. Транспорт не работает. Именно поэтому российские учёные (опять же из ДФУ) призвали обратить самое пристальное внимание на своё здоровье, если во рту ощущается привкус железа. Это могут быть останки разорванного гемоглобина, которые выделяются со слюной. Исследователи подчеркнули, что подобные ощущения — первичная реакция на коронавирус, то есть это происходит на самых ранних этапах вероломной атаки. А значит, никаких намёков на заболевание (да и вообще никаких признаков недомогания) может ещё не быть. А меж тем организм уже приближается к критической нехватке кислорода, от которой страдают все органы без исключения. Это грозит полиорганной недостаточностью и смертью. Учёные считают, что в такой ситуации аппарат ИВЛ совершенно бесполезен: сколько ни старайся обеспечить лёгкие кислородом, развозить его по организму некому. По мнению исследователей, стоит вместо искусственной вентиляции ввести больному дозу эритроцитов и обеспечить его витамином В12, потому что он отвечает за кроветворение.

Однако директор Санкт-Петербургского НИИ фтизиопульмонологии Пётр Яблонский предупредил и о возможной опасности подобных мер.

Введение эритроцитной массы мало и даже контрпродуктивно, потому что мы тем самым усиливаем тромбогенный потенциал крови. Я не видел больных ковидом с анемией

А вот дыхательную маску доктор медицинских наук однозначно одобряет.

С точки зрения прогноза и недопущения до искусственной вентиляции — это, безусловно, хороший метод

Последние комментарии

38x43_1_0_1_0__home_zdr_newzdr_images_avatar6.pngQueeny [4 дня назад] Всё правильно написано. Я тоже в своё время имела дело с «плато», 38x43_1_0_1_0__home_zdr_newzdr_images_avatars_avatar_1620481655.jpgiyvshdua [8 дней назад] такая же история Natali32 [13 дней назад] Я к народным методам лечения отношусь скептически. Когда помогают — когда нет.

Химические свойства

Сильный окислитель, самый активный неметалл после фтора, образует бинарные соединения (оксиды) со всеми элементами, кроме гелия, неона, аргона. Наиболее распространённая степень окисления −2. Как правило, реакция окисления протекает с выделением тепла и ускоряется при повышении температуры (см. Горение). Пример реакций, протекающих при комнатной температуре:

<math> 2Li2O}}}» xmlns=»http://www.w3.org/1998/Math/MathML»><semantics><mrow><mstyle><mrow><mn>4</mn><mtext>Li</mtext><mo>+</mo><msubsup><mtext>O</mtext><mrow><mn>2</mn></mrow></msubsup><mo>⟶</mo><mn>2</mn><msubsup><mtext>Li</mtext><mrow><mn>2</mn></mrow></msubsup><mtext>O</mtext></mrow></mstyle></mrow><annotation>{displaystyle {ce {4Li + O2 -> 2Li2O}}}</annotation></semantics></math>im224-360px-Emergency_stock_of_oxygen.jpg

Аварийный запас кислорода в бомбоубежище

Большинство живых существ (аэробы) дышат кислородом. Широко используется кислород в медицине. При сердечно-сосудистых заболеваниях для улучшения обменных процессов в желудок вводят кислородную пену («кислородный коктейль»). Подкожное введение кислорода используют при трофических язвах, слоновости, гангрене и других серьёзных заболеваниях. Для обеззараживания и дезодорации воздуха и очистки питьевой воды применяют искусственное обогащение озоном. Радиоактивный изотоп кислорода 15O применяется для исследований скорости кровотока, лёгочной вентиляции.

История открытия

Официально считается[4][5], что кислород был открыт английским химиком Джозефом Пристли1 августа1774 года путём разложения оксида ртути в герметично закрытом сосуде (Пристли направлял на это соединение солнечные лучи с помощью мощной линзы).

<math>[t] 2Hg + O2 ^}}}» xmlns=»http://www.w3.org/1998/Math/MathML»><semantics><mrow><mstyle><mrow><mn>2</mn><mtext>HgO</mtext><mrow><mover><mo>→</mo><mpadded><mi>t</mi></mpadded></mover></mrow><mn>2</mn><mtext>Hg</mtext><mo>+</mo><msubsup><mtext>O</mtext><mrow><mn>2</mn></mrow></msubsup><mrow><mo>↑</mo></mrow></mrow></mstyle></mrow><annotation>{displaystyle {ce {2HgO ->[t] 2Hg + O2 ^}}}</annotation></semantics></math>im324-640px-Oxygenation-atm-ru.svg.pngНакопление O2 в атмосфере Земли. Зелёный график — нижняя оценка уровня кислорода, красный — верхняя оценка. 1. (3,85—2,45 млрд лет назад) — O2 не производился2. (2,45—1,85 млрд лет назад) — O2 производился, но поглощался океаном и породами морского дна3. (1,85—0,85 млрд лет назад) — O2 выходит из океана, но расходуется при окислении горных пород на суше и при образовании озонового слоя4. (0,85—0,54 млрд лет назад) — все горные породы на суше окислены, начинается накопление O2 в атмосфере5. (0,54 млрд лет назад — по настоящее время) — современный период, содержание O2 в атмосфере стабилизировалось</span>

Кислород — самый распространённый в земной коре элемент, на его долю (в составе различных соединений, главным образом силикатов) приходится около 47 % массы твёрдой земной коры. Морские и пресные воды содержат огромное количество связанного кислорода — 85,82 % (по массе). Более 1500 соединений земной коры в своём составе содержат кислород[6].

В атмосфере содержание свободного кислорода составляет 20,95 % по объёму и 23,10 % по массе (около 1015 тонн[7]). Однако до появления первых фотосинтезирующих микробов в архее 3,5 млрд лет назад в атмосфере его практически не было. Свободный кислород в больших количествах начал появляться в палеопротерозое (3—2,3 млрд лет назад) в результате глобального изменения состава атмосферы (кислородной катастрофы). Первый миллиард лет практически весь кислород поглощался растворённым в океанах железом и формировал залежи джеспилита. 3—2,7 млрд лет назад кислород начал выделяться в атмосферу и 1,7 млрд лет назад достиг 10 % от нынешнего уровня[8][9].

Наличие большого количества растворённого и свободного кислорода в океанах и атмосфере привело к вымиранию большинства анаэробных организмов. Тем не менее, клеточное дыхание с помощью кислорода позволило аэробным организмам производить гораздо больше АТФ, чем анаэробным, сделав их доминирующими[10].

С начала кембрия 540 млн лет назад содержание кислорода колебалось от 15 % до 30 % по объёму[11]. К концу каменноугольного периода (около 300 миллионов лет назад) его уровень достиг максимума в 35 % по объёму, который, возможно, способствовал большому размеру насекомых и земноводных в это время[12].

Основная часть кислорода на Земле выделяется фитопланктоном Мирового океана. Около 60 % кислорода от используемого живыми существами расходуется на процессы гниения и разложения, 80 % кислорода, производимого лесами, уходит на гниение и разложение растительности лесов[13].

Деятельность человека очень мало влияет на количество свободного кислорода в атмосфере[14]. При нынешних темпах фотосинтеза понадобится около 2000 лет, чтобы восстановить весь кислород в атмосфере[15].

Кислород входит в состав многих органических веществ и присутствует во всех живых клетках. По числу атомов в живых клетках он составляет около 25 %, по массовой доле — около 65 %[6].

В 2016 году датские учёные доказали, что свободный кислород входил в состав атмосферы уже 3,8 млрд лет назад[16].

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий