Вы видите 222 или 2:22 — Узнайте, что вам говорит Вселенная!

Построение логической схемы по таблице истинности

По заданной СДНФ (по таблице истинности) создается новая логическая схема (если не выбран пункт Строить новую схему при минимизации булевой функции). Если вычисления происходят по исходной схеме и она понадобится в дальнейшем, то ее можно предварительно сохранить (меню Действия/Сохранить). Название переменных можно изменить. Для этого их необходимо выбрать (первая строка таблицы). Количество переменных

a b c f
1
1
1 1
1
1 1
1 1
1 1 1

Для построения схемы и установки параметров решения, необходимо нажать Далее.

Физические реализации

Реализация логических элементов возможна при помощи устройств, использующих самые разнообразные физические принципы:

  • механические,
  • гидравлические,
  • пневматические,
  • электромагнитные,
  • электромеханические,
  • электронные.

Физические реализации одной и той же логической функции, а также обозначения для истины и лжи, в разных системах электронных и неэлектронных элементов отличаются друг от друга.

Элементы транзисторно-транзисторной логики

Характерной особенностью ТТЛ является использование многоэмиттерных транзисторов. Эти транзисторы сконструированы таким образом, что отдельные эмиттеры не оказывают влияния друг на друга. Каждому эмиттеру соответствует свой p-n-переход. В первом приближении многоэмиттерный транзисторможет моделироваться схемой на диодах (см. пунктир на рис. 3.27).

Васильев Дмитрий ПетровичПрофессор электротехники СПбГПУ Упрощенная схема ТТЛ-элемента приведена на рис. 3.27. При мысленной замене многоэмиттерного транзистора диодами получаем элемент диодно-транзисторной логики «И-НЕ». Из анализа схемы можно сделать вывод, что если на один из входов или на оба входа подать низкий уровень напряжения, то ток базы транзистора Т2 будет равен нулю, и на коллекторе транзистора Т2 будет высокий уровень напряжения.

Если на оба входа подать высокий уровень напряжения, то через базу Т2 транзистора будет протекать большой базовый ток и на коллекторе транзистора Т2 будет низкий уровень напряжения, т. е. данный элемент реализует функцию И-НЕ:

uвых= u1· u2. Базовый элемент ТТЛ содержит многоэмиттерный транзистор, выполняющий логическую операцию И, и сложный инвертор (рис. 3.28). 3.28.jpg Если на один или оба входа одновременно подан низкий уровень напряжения, то многоэмиттерный транзистор находится в состоянии насыщения и транзистор Т2 закрыт, а следовательно, закрыт и транзистор Т4, т. е. на выходе будет высокий уровень напряжения.

Васильев Дмитрий ПетровичПрофессор электротехники СПбГПУ Если на обоих входах одновременно действует высокий уровень напряжения, то транзистор Т2 открывается и входит в режим насыщения, что приводит к открытию и насыщению транзистора Т4 и запиранию транзистора Т3, т. е. реализуется функция И-НЕ.

Для увеличения быстродействия элементов ТТЛ используются транзисторы с диодами Шоттки (транзисторы Шоттки).

Микросхемы ТТЛШ

Микросхемы ТТЛШ серии К555 характеризуются следующими параметрами:

  • напряжение питания +5 В;
  • выходное напряжение низкого уровня — не более 0,4 В;
  • выходное напряжение высокого уровня — не менее 2,5 В;
  • помехоустойчивость — не менее 0,3 В;
  • среднее время задержки распространения сигнала — 20 нс;
  • максимальная рабочая частота — 25 МГц.

bai_70.jpgВасильев Дмитрий ПетровичПрофессор электротехники СПбГПУ Микросхемы ТТЛШ обычно совместимы по логическим уровням, помехоустойчивости и напряжению питания с микросхемами ТТЛ. Время задержки распространения сигнала элементов ТТЛШ в среднем в два раза меньше по сравнению с аналогичными элементами ТТЛ.

Особенности других логик

Основой базового логического элемента ЭСЛ является токовый ключ. Схема токового ключа (рис. 3.30) подобна схеме дифференциального усилителя. 3.30.jpg Необходимо обратить внимание на то, что микросхемы ЭСЛ питаются отрицательным напряжением (к примеру, −4,5 В для серии К1500). На базу транзистора VT2 подано отрицательное постоянное опорное напряжение Uоп. Изменение входного напряжения uвх1 приводит к перераспределению постоянного тока iэ0, заданного сопротивлением Rэ между транзисторами, что имеет следствием изменение напряжений на их коллекторах.

Транзисторы не входят в режим насыщения, и это является одной из причин высокого быстродействия элементов ЭСЛ.

Микросхемы серий 100, 500 имеют следующие параметры:

  • напряжение питания −5,2 В;
  • потребляемая мощность — 100 мВт;
  • коэффициент разветвления по выходу — 15;
  • задержка распространения сигнала — 2,9 нс.

В микросхемах n-МОП и p-МОП используются ключи соответственно на МОП-транзисторах с n-каналом и динамической нагрузкой (рассмотрены выше) и на МОП-транзисторах с p-каналом.

В качестве примера рассмотрим элемент логики n-МОП, реализующий функцию ИЛИ-НЕ (рис. 3.31). 3.31.jpg

Он состоит из нагрузочного транзистора Т3 и двух управляющих транзисторов Т1 и Т2. Если оба транзистора Т1 и Т2 закрыты, то на выходе устанавливается высокий уровень напряжения. Если одно или оба напряжения u1и uимеют высокий уровень, то открывается один или оба транзистора Т1 и Т2 и на выходе устанавливается низкий уровень напряжения, т. е. реализуется функция uвых= u1 + u2.

Для исключения потребления мощности логическим элементом в статическом состоянии используются комплементарные МДП — логические элементы (КМДП или КМОП-логика). В микросхемах КМОП используются комплементарные ключи на МОП-транзисторах. Они отличаются высокой помехоустойчивостью. Логика КМОП является очень перспективной. Рассмотренный ранее комплементарный ключ фактически является элементом НЕ (инвертором).

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий