Основные оксиды, перечень, список, физические и химические свойства

Номенклатура

В соответствии с номенклатурой ИЮПАК, оксиды называют словом «оксид», после которого следует наименование химического элемента в родительном падеже, например: Na2O — оксид натрия, Al2O3 — оксид алюминия. Если элемент образует несколько оксидов, то в их названиях указывается его степень окисления римской цифрой в скобках сразу после названия (без пробела). Например, Cu2О — оксид меди(I), CuO — оксид меди(II), FeO — оксид железа(II), Fe2О3 — оксид железа(III), Cl2O7 — оксид хлора(VII).

Часто используют и другие наименования оксидов по числу атомов кислорода: если оксид содержит только один атом кислорода, то его называют монооксидом, моноокисью или закисью, если два — диоксидом или двуокисью, если три — то триоксидом или триокисью и т. д. Например: монооксид углерода CO, диоксид углерода СО2, триоксид серы SO3.

Также распостранены исторически сложившиеся (тривиальные) названия оксидов, например угарный газ CO, серный ангидрид SO3 и т. д.

Общий органический углерод (ООУ)

Углерод – основа всех органических молекул. Поэтому любая органика будет содержать определенное количество углерода. К примеру, для молекулы этилового спирта C2H5OH это количество будет равно двум атомам углерода на одну молекулу. Зная концентрации органических веществ, можно вычислить содержание углерода в них. И наоборот – зная количество общего органического углерода, можно вычислить содержание органических примесей в пробе.

2.jpg

ТОС и другие формы углерода

Общий органический углерод – ООУ, либо TOC (от англ. Total Organic Carbon) связан со всеми показателями содержания в пробе углерода. Вот все они в перечне:

  • Общий углерод – ОУ (Total Carbon – TC), показывает общее содержание углерода в пробе вне зависимости от его органической или неорганической природы.
  • Общий органический углерод – ООУ (Total Organic Carbon – TOC), показывает общее содержание органического углерода в пробе.
  • Общий неорганический углерод – ОНУ (Total Inorganic Carbon – TIC), показывает общее содержание углерода в неорганических примесях в пробе.
  • Растворенный органический углерод – РОУ (Dissolved Organic Carbon – DOC), показывает содержание фракции органического углерода, которая проходит сквозь фильтр с размером ячейки 0,22-0,7 мкм.
  • Твердый органический углерод – ТОУ (Purgeable Organic Carbon – POC) – фракция органического углерода, которая оседает на фильтре с размером ячейки 0,22-0,7 мкм.

Все эти виды углерода – части большой и сложной системы (См.: схема на рис. 1.)

1.jpg

Измерить содержание того или иного вида углерода в воде достаточно затруднительно, поэтому для измерения зачастую используются косвенные методы. К примеру, содержание общего органического углерода в пробе устанавливают в несколько этапов:

  1. Измеряют содержание общего углерода.
  2. Затем – измеряют количество неорганического углерода, выделившегося из аналогичной пробы при подкислении.
  3. После этого – вычитают ОНУ из ОУ.

Использование таких косвенных методов актуально практически в измерении всех форм углерода, содержащихся в анализируемых природных и сточных водах.

Источники появления в воде

Углерод – важный участник различных химических циклов веществ на Земле. Помимо наличия в виде солей-карбонатов в составе многих минералов, он также присутствует в атмосфере в виде различных газов: углекислого, угарного, метана. Углерод – основной составной элемент в большинстве органических молекул. К примеру, белков, жиров, углеводов. Этого элемента много содержится в нефти.

В качестве основного источника появления углерода в воде мирового океана принято считать контакт поверхности воды с атмосферой. Углекислый газ растворяется в приповерхностном слое воды. Однако, следует упомянуть и другие пути попадания углерода в воду. Среди них – растворенный органический углерод, попадающий в воды вместе со стоками различной природы и вымываемый водой из горных пород и почвы нерастворимый неорганический углерод.

Попадая в природные водоёмы, углерод вступает в ряд химических, физических и биологических процессов, включающих в себя фотосинтез, осаждение и кристаллизацию, участие в пищевых цепочках или дальнейшее отложение в более глубоких слоях океана в различном виде.

Можно сделать вывод, что источников появления углерода в воде много. Его присутствие в ней – норма. Тем не менее, углеродный цикл планеты – неустойчивая система. Поэтому антропогенный фактор влияет на её работу.

Значение для экологии

Углерод – основа всех органических соединений и, соответственно, жизни. В связи с этим, баланс в углеродном цикле планеты является крайне важным аспектом экологии.

Наиболее известным экологическим эффектом, связанным с углеродом, является изменение состава атмосферы и накопление парниковых газов (метана и углекислого газа) в результате антропогенного влияния. Различные виды топлива – нефть, природный газ, нефть и продукты её переработки – имеют в своем составе углерод. При сгорании топлива выделяется углекислый газ. При поступлении в атмосферу, он увеличивает возможность планеты к накоплению тепла, что является одной из возможных причин глобального потепления.

Тем не менее, влияние повышения концентрации углекислого газа в атмосфере на экологию не ограничивается парниковым эффектом. Из-за активно происходящего массообмена между атмосферой и поверхностными водами, присутствие дополнительного углекислого газа повышает кислотность водоёмов, что оказывает влияние на весь углеродный цикл планеты. К примеру, из-за повышения кислотности воды могут наблюдаться сбои в жизненных циклах некоторых живых существ, проблемы с нормальным течением процессов вымывания почв и прочее.

В целом, углеродный цикл оказывает критически важное влияние на экосистему в целом, поэтому особенно важно следить за уровнями различных видов углеродных примесей в сточных водах.

Химические свойства: Амфотерные оксиды.

При взаимодействии с сильной кислотой или кислотным оксидом проявляют основные свойства:

ZnO + 2HCl = ZnCl2 + H2O

При взаимодействии с сильным основанием или основным оксидом проявляют кислотные свойства:

ZnO + 2KOH + H2O = K2[Zn(OH)4)]  (в водном растворе)

ZnO + CaO = CaZnO2  (при сплавлении)

Получение оксидов

1. Взаимодействие простых веществ (за исключением инертных газов, золота и платины) с кислородом:

2H2 + O2 = 2H2O

2Сu + O2 = 2СuO

При горении в кислородещелочных металлов (кроме лития), а также стронция и бария образуются пероксиды и надпероксиды:

2Na + O2 = Na2O2

K + O2 = KO2

2. Обжиг или горение бинарных соединений в кислороде:

4FeS2 + 11O2 = 2Fe2O3 + 8SO2

CS2 + 3O2 = CO2 + 2SO2

2PH3 + 4O2 = P2O5 + 3H2O

3. Термическое разложение солей:

CaCO3 = CaO + CO2

2FeSO4 = Fe2O3 + SO2↑ + SO3

4. Термическое разложение оснований или кислот:

2Al(OH)3 = Al2O3 + 3H2O↑

4HNO3 = 4NO2↑ + O2↑ + 2H2O

5. Окисление низших оксидов в высшие и восстановление высших в низшие:

4FeO + O2 = 2Fe2O3

Fe2O3 + CO = 2FeO + CO2

6. Взаимодействие некоторых металлов с водой при высокой температуре:

Zn + H2O = ZnO + H2

7. Взаимодействие солей с кислотными оксидами при нагревании с выделением летучего оксида:

Ca3(PO4)2 + 3SiO2 = 3CaSiO3 + P2O5

8. Взаимодействие металлов с кислотами-оксилителями:

Zn + 4HNO3(конц.) = Zn(NO3)2 + 2NO2↑ + 2H2O

9. При действии водоотнимающих веществ на кислоты и соли:

2KClO4 + H2SO4(конц) = K2SO4 + Cl2O7 + H2O

10. Взаимодействие солей слабых неустойчивых кислот с более сильными кислотами:

NaHCO3 + HCl = NaCl + H2O + CO2

Оцените статью
Рейтинг автора
5
Материал подготовил
Илья Коршунов
Наш эксперт
Написано статей
134
Добавить комментарий